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Abstract

Reset control has the potential of providing better
trade-o s among competing specifications compared to
LTI control. In this paper we consider a specific class
of reset control systems consisting of a feedback inter-
connection between a linear second-order system and
a so-called first-order reset element (FORE). Despite
the simplicity of this feedback system, few theoretical
results are available to quantify stability and perfor-
mance. This paper develops a necessary and su cient
condition for asymptotic stability and a su cient con-
dition for BIBO stability. We also characterize steady-
state response, overshoot, rise time and settling time
to step input.

1 Introduction

It is well-known that there exist performance trade-
o s in the design of linear feedback control system due
to the constraints imposed by Bode’s gain-phase re-
lationship [10]. Specifically, high-frequency loop gain
is limited by low-frequency specifications and stability
margins. This phenomenon is called “cost of feedback”
for which LTI design can not remedy. Reset control
was introduced to improve this problem.

The basic idea of reset control is to reset the state of
a linear controller to zero whenever its input meets
a threshold. Typical reset controllers include the so-
called Clegg-integrator [1] and first-order reset ele-
ment (FORE) [2]. The former is a linear integrator
whose output resets to zero when its input cross zero.
The latter generalizes the Clegg concept to a lag filter
1/(s+ b). The structure of reset control system under
consideration is shown in Figure 1 where signals r(t),
y(t), e(t), n(t) and d(t) represent reference input, out-
put, error, sensor noise and disturbance respectively.
In the absence of resetting, the FORE behaves as the
linear filter 1/(s + b). In this case, we refer to the
resulting linear, closed loop system as the base linear
system.

Reset control has the potential to provide improved
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Figure 1: Block diagram of reset control system

performance tradeo s in feedback control as exempli-
fied by the work in [2]-[4]. This potential was also
confirmed experimentally in [4] and [5]. To further il-
lustrate, consider an example with L(s) = (s+1)/s(s+
0.2) and b = 1. Figure 2 shows that this reset con-
trol system achieves a 40% reduction in step response
overshoot compared to its base linear system. Figure 3
shows that their responses to 2 rad/sec sinusoidal sen-
sor noise are similar. The implication is that FORE
provides better performance tradeo s.

Despite its potential benefit, there is a lack of theoret-
ical results for stability and performance of reset con-
trol system. To address this void, we continue along
the line of research conducted in [7] and [8] and per-
form a detailed investigation of the stability and per-
formance of reset control systems having second-order
linear plants. First, we develop a necessary and su -
cient condition for asymptotic stability and a su cient
condition for BIBO stability. These results are proven
e cient and easy to check when applied to a specific
class of reset control systems. Secondly we study the
step response and characterize steady-state response,
overshoot, rise time and settling time. For a specific
class of reset control systems, we explicitly compute
the maximum overshoot, rise time and settling time
for the step response.

Finally, we want to point out that reset control ac-
tion resembles a number of popular nonlinear control
strategies including relay control , sliding mode con-
trol (SMC) and switching control. A common feature
to all of these is the use of a switching surface to trigger
change in the control signal. In relay control, SMC and
switching control, the control law is defined di erently
on each side of the switching surface. In contrast, the
same control law is used on both sides of the switch-
ing surface in reset control. A change takes place on
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Figure 2: Comparison of step responses for reset control
system (solid) and its base linear system (dot).
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Figure 3: Comparison of responses to 2 rad/sec sinusoidal
sensor noise for the reset control system (solid)
and its base linear system (dot).

a fixed surface wherein the controller states are reset
to zero. The reset action can be modeled as the in-
jection of judiciously-timed, state-dependent impulses
into an otherwise linear feedback system. This analogy
is evident in the paper where we model reset control
systems by impulsive di erential equations; e.g., see
[9]. However, the results for impulse di erential equa-
tions are too conservative for our specific class of reset
control systems.

2 State-Space Description

The structure of the reset control system under con-
sideration is shown in the Figure 1. For simplicity, we
only consider response to r(t) and assume that n(t)
and d(t) are zero. Response to either n(t) or d(t) can
be dealt with in a similar way. The FORE element is
described by the impulsive di erential equation [9]:

ẋc(t) = bxc(t) + e(t); e(t) 6= 0 (1)

xc(t
+) = 0; e(t) = 0

where xc(t) is the state of FORE. The time instants
when e(t) = 0 are called reset times and the set of
reset times I is defined as

I = {ti | e(ti) = 0, ti > ti 1, i = 1, 2, ...}.

Assume that {A,B,C} is a minimal realization of L(s)
and xp(t) <n is the plant states. Then the state-
space description of the reset control system in Figure
1 is

ẋp(t) = Axp(t) +Bxc(t)

ẋc(t) = Cxp(t) bxc(t) + r(t); t / I (2)

xc(t
+) = 0; t I

I = {ti | Cxp(ti) r(ti) = 0, ti > ti 1}.

The output is y(t) = Cxp(t). Now, define x(t) =

[xTp (t) xc(t)]
T and Acl =

·
A B
C b

¸
. Then, when

t (ti, ti+1], the reset control system (2) behaves as
the base linear system

.
x (t) = Aclx(t) +

·
0
r(t)

¸
, (3)

3 A Preliminary Result

When the input of (2), r(t), is equal to a constant r0,
we can transform it into a new reset control system
with zero input. First, we have the following lemma
(see [11]).

Lemma 1 If L(s) has at least one integrator, then
there exists a x0 <n such that Ax0 = 0, and
Cx0 = r0. ¥

Define the state transformation xp0(t) = xp(t) x and
associated transformed system:

ẋp0(t) = Axp0(t) +Bxc(t)

ẋc(t) = Cxp0(t) bxc(t); t / I (4)

xc(t
+) = 0; t I

I = {ti | Cxp(ti) (ti) = 0, ti > ti 1}.

We can prove the following theorem (see [11]).

Theorem 2 If L(s) has at least one integrator, then
system (2) and system (4) are equivalent under the
state transformation xp0(t) = xp(t) x0. ¥

Theorem 2 states that when the input r(t) is constant,
we only need to consider a reset control system (4) un-
der zero input. This result holds for any reset control
system provided that L(s) has at least one integrator.



4 Response Under Zero Input

From now on, we will focus on the reset control sys-
tems (2) with a second-order plant L(s) which we
call a second-order reset control system. In this case,
the plant state xp(t) = [x1(t) x2(t)]

T . Then x(t) =
[x1(t) x2(t) xc(t)]

T . Without loss of generality we as-
sume that C = [0, 1]. Therefore y(t) = x2(t).

In this section, we consider the zero-input case for
which (2) becomes:

ẋp(t) = Axp(t) +Bxc(t)

ẋc(t) = Cxp(t) bxc(t); t / I (5)

xc(t
+) = 0; t I

and the output is y(t) = x2(t). From (3), we know
that between successive reset times ti and ti+1, the
closed-loop system behaves as the LTI system:

.
x (t) = Aclx(t), t (ti, ti+1]

Therefore,

x(t) = eAcl(t ti)x(t+i ), t (ti, ti+1]. (6)

By definition, the reset times ti are characterized by
e(ti) = 0. Since y(t) = x2(t) and r(t) = 0, at each
ti we have x2(ti) = 0 and xc(t

+
i ) = 0. Therefore, (6)

becomes

x(t) =
p11(t ti)
p21(t ti)
p31(t ti)

x1(ti), t (ti, ti+1]. (7)

where pij(t) denotes the (i, j)th entry of eAclt.We have
following results:

Lemma 3 Let 0 > 0 denote the smallest number for
which p21( 0) = 0. Then, the reset times ti for system
(5) satisfy ti+1 ti = 0 for all i.

Proof: The reset time ti+1 is defined as the first time
instant after ti for which x2(ti+1) = 0. It follows from
(7) that x2(ti+1) = p21(ti+1 ti)x1(ti) = 0. The case
x1(ti) = 0 is trivial since x(t) will stay at 0 after ti. So,
assume x1(ti) 6= 0. Therefore, ti+1 ti is the smallest
value such that p21(ti+1 ti) = 0. Hence, ti+1 ti = 0.
Proof is completed. ¥

Theorem 4 Assume x(t) is a solution of system (5),
then x(t+ 0) = p11( 0)x(t) for any t > t1.

Proof: From Lemma 3, ti+1 ti = 0. So, from (7)
we have

x1(ti+1) = p11( 0)x1(ti). (8)

Substitute back to (7), it is easy to get

x(t+ 0) = p11( 0)x(t) (9)

Proof is completed. ¥
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Figure 4: Response of Second-order Reset System under
Zero Input

Corollary 5 The output of system (5) satisfies
y(t+ 0) = p11( 0)y(t) for any t > t1. ¥

Theorem 4 describes an important feature of the
trajectory x(t) of second-order reset control system
under zero input. When t (ti+1, ti+2], x(t) =
[p11( 0)]

ix(t i 0) where t i 0 (t1, t1 + 0]. In
other words, the trajectory x(t) after t > t1 + 0 is
simply a copy of the trajectory of x(t) over (t1, t1+ 0]
scaled by factor p11( 0). This feature is shown in Fig-
ure 4. The following result follows immediately.

Theorem 6 The reset control system (5) is asymp-
totically stable if and only if |p11( 0)| < 1. ¥

5 Step Response

In this section we make a further assumption that L(s)
has at least one integrator. In the case of step input,
(2) becomes:

ẋp(t) = Axp(t) +Bxc(t)

ẋc(t) = Cxp(t) bxc(t) + 1; t / I (10)

xc(t
+) = 0; t I

y(t) = Cxp(t).

From Theorem 2, it su ces to consider the following
system:

ẋp0(t) = Axp0(t) +Bxc(t)

ẋc(t) = Cxp0(t) bxc(t); t / I (11)

xc(t
+) = 0; t I

y0(t) = Cxp0(t).

where xp0(t) = xp(t) x0, x0 is from Lemma 1. There-
fore,

y(t) = y0(t) +Cx0 = y0(t) + 1.
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Figure 5: Step response of second-order reset system

The conclusion is that the step response of a second-
order reset control system is equal to its response under
zero input plus 1. This property is verified in compar-
ing Figures 4 and 5. Therefore, the following results
follows directly from the results in Section 4.

Corollary 7 For system (10) let 0 > 0 be the small-
est number satisfying p21( 0) = 0. Then, ti+1 = ti+ 0

for all i. ¥

Corollary 8 The equilibrium state of system (10) is
asymptotically stable if and only if |p11( 0)| < 1. ¥

Corollary 9 The output y(t) of system (10) satisfies
y(t+ 0) 1 = p11( 0)[y(t) 1] for any t > t1. ¥

The following are some characteristics of the step
response of second-order reset control system (10).
These results can be derived easily from Corollary 7-9.

Theorem 10 If system (10) is asymptotically stable,
then its output y(t) satisfies lim

t
y(t) = 1. ¥

Theorem 11 Let Mr =max
t>t1

|y(t) 1| denotes the

maximum overshoot of system (10). If system (10) is
asymptotically stable, then Mr = max

t [t1,t1+ 0)
|y(t) 1| .

¥

Since the reset control system (10) behaves as a linear
system before the first reset time, its rise time tr will
be the same as that of its base linear system.

The 2% settling time ts can be computed using Corol-
lary 9; namely, that the peak response in the reset
interval [ti, ti + 0) is the peak response in the first
reset interval [t1, t1+ 0), which is equal toMr, scaled
by p11( 0)

k (see Figure 5). Thus, the settling time will
be ts = k 0 where k is determined by the inequality
|p11( 0)|

k
Mr < 0.02.

6 BIBO Stability

This section develops a su cient condition for BIBO
stability. We assume that Acl is stable and there exists
a constant M such that |r(t)| <M for all t.

When t (ti, ti+1), the reset system behaves as the
LTI system (3) so that

x(t) = eAcl(t ti)x(t+i ) +

Z t

ti

eAcl(t )

·
0

r( )

¸
d .

Since y(t) = x2(t), then x2(ti) = r (ti) . Hence,

x1(t) = p11(t ti)x1(ti) + p12(t ti)r(ti)

+

Z t

ti

p13(t )r( )d ; (12)

x2(t) = p21(t ti)x1(ti) + p22(t ti)r(ti)

+

Z t

ti

p23(t )r( )d ; (13)

where pij(t) are the (i, j)th entry of eAclt.We have the
following lemma:

Lemma 12 If x1(ti) is bounded for all ti, then y(t)
is bounded, i.e, there exists a constant M1 such that
|y(t)| < M1 for all t.

Proof: Since Acl is stable, from (13) there must exist
constants and such that

|x2(t)| < |x1(ti)|+ M.

If x1(ti) is bounded for all ti, then x2(t) is bounded
for all t. It follows that y(t) is bounded. ¥

The main result of this section is as follows:

Theorem 13 If there exists a < 1 such that
|p11( i)| 6 for all reset intervals i = ti+1 ti, then
y(t) is bounded.

Proof: From (12), we have

x1(t) = p11( i)x1(ti) + p12( i)r(ti)

+

Z ti+1

ti

p13(ti+1 )r( )d .

Because Acl is stable, there must exists a positive con-
stant 1 such that



|x1(ti+1)| < |p11( i)| |x1(ti)|+ 1M

< |x1(ti)|+ 1M

< i |x1(t1)|+
1 i

1
1M

< |x1(t1)|+
1

1
1M.

So, x1(ti) is bounded for all ti. From Lemma 12 y(t)
is bounded. The proof is completed. ¥

7 Specialized Linear Plant

In this section we specialize the results in stability and
step response to a class of second-order reset control
systems in which the linear plant is

L(s) =
2
n(s+ b)

s(s+ 2 n)
(14)

where the parameters (b, , n) are positive. The rea-
son for considering (14) is that its base linear sys-
tem has the standard second-order transfer function
T (s) = 2

n/(s
2 + 2 ns+ 2

n).

7.1 Asymptotic and BIBO Stability

For this class of reset control system, the correspond-
ing Acl is asymptotically stable. Moreover, we can
show that that |p11( )| < 1 for all positive parameters
(b, , n) and any > 0. Consequently, from Theo-
rem 6 and 13, this class of reset control system (14) is
asymptotically and BIBO stable.

7.2 Step Response

We characterize the step response of the reset control
system (14) as follows: First, we invoke Theorem 10
and conclude that the step response will asymptoti-
cally track the reference. Secondly, using Theorem 11,
the maximum value of overshoot Mr is equal to the
peak response in the first reset interval [t1, t1 + 0).
This value has been given in [2]. Therefore the exact
value of maximum overshoot Mr is

Mr = exp

·
/

q
1 2

¸
(15)

where

=

R[4M2 2e µ 2 M(1 4 2M)e µ/ M ]
1 4 2M+4 2M2 ; 0.5

R[M2e µ M(1 2 M)e µ/M ]
1 2 M+M2 ; 0.5

R =exp

Ãp
1 2

arccos

!
;M =

c

b
;µ =

arccosp
1 2

c is the crossover frequency of L(s). Thirdly, the
rise time tr is exactly that of the base linear system
2
n/(s

2 + 2 ns+
2
n). Finally the settling time ts is

ts = k /(

q
1 2

n) (16)

where k satisfies |p11( 0)|
k
Mr < 0.02.

8 Conclusion

In this paper, the stability and performance of second-
order reset control system are investigated in detail.
These results will constitute a good base for the further
investigation and application of reset system.
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