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Abstract

Bode's gain-phase relationship places a hard limita-

tion on performance tradeo�s in linear, time-invariant

feedback control systems. It has long been suggested

that reset control has the potential to improve this

situation. Recent experimental studies support this

claim. This paper focuses on the analysis of such

reset control systems which has been missing in this

past work. Speci�cally, we give results on bounded-

input bounded-output stability, asymptotic stability

and steady-state performance. These results are ap-

plied to an experimental demonstration of reset control

of a 
exible mechanism.

1 Introduction

It is well-appreciated that Bode's gain-phase relation-

ship [1] places a hard limitation on performance trade-

o�s in linear, time-invariant (LTI), feedback control

systems. Speci�cally, the need to minimize the open-

loop high-frequency gain often competes with required

high levels of low-frequency loop gains and stability

margin bounds. Our focus on reset control systems is

motivated by its potential to improve this situation as

demonstrated theoretically in [2]4 and by simulations

and experiments [3]-[6].

The basic concept in reset control is to reset the state

of a linear controller to zero whenever its input meets

a threshold. Typical reset controllers include the so-

called Clegg integrator [7] and �rst-order reset element

(FORE) [3]. The former is a linear integrator whose

output resets to zero when its input crosses zero. The

latter generalizes the Clegg concept to a �rst-order lag

�lter. In [7], the Clegg integrator was shown to have a

describing function similar to the frequency response

of a linear integrator but with only 38.1Æ phase lag.

A FORE was shown to have similar feature while pro-

viding a further design freedom when compared with
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4This work provides an example of control speci�cations that

can be achieved by reset control and not by linear feedback.

Clegg-integrator ([4] and [6]). In our study, we adopt

the FORE reset mechanism in feedback interconnec-

tion with a linear system to obtain the so-called reset

control system shown in Figure 1. The signals r; y; e; n

and d in Figure 1 represent reference input, output, er-

ror signal, sensor noise and disturbance, respectively,

and L(s) denotes the linear loop consisting of the plant

and any linear compensation5.
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Figure 1: Block diagram of the servo system.

The objective of this paper is to provide a level of anal-

ysis missing in past work on reset control. The analysis

in [7] was limited to describing functions while [3] and

[4] ignored stability issues altogether. An application

of small gain in [5] appears too conservative and could

not validate the observed experimental performance in

[6]. Motivated by this lack of results, this paper con-

tinues our recent work reported in a sequence of con-

ference papers [8], [9], and [10]. In this paper, we intro-

duce a condition, called the � positive-real condition,

which, when satis�ed, allows one to assert BIBO and

asymptotic stability of the reset control system. Under

this condition, we will also show that the reset control

system inherits the steady-state tracking properties of

an underlying linear control system. Very importantly,

we will show that the � positive-real condition is satis-

�ed for the experiment considered in [6], thus con�rm-

ing the observed stability as well as demonstrating the

applicability of our results.

Reset control action resembles a number of popu-

lar nonlinear control strategies including relay control

[11], sliding mode control [12] and switching control

[13]. A common feature to these is the use of a switch-

ing surface to trigger change in control signal. Distinc-

tively, reset control employs the same (linear) control

law on both sides of the switching surface. Resetting

occurs when the system trajectory impacts this sur-

face. This reset action can be alternatively viewed

5The design of the reset control system in Figure 1 involves

the selection of both the FORE's pole and some linear compen-

sation in L(s). This will be discussed in Section 5.



as the injection of judiciously-timed, state-dependent

impulses into an otherwise LTI feedback system. This

analogy is evident in the paper where we use impul-

sive di�erential equations; e.g., see [14] and [15], to

model dynamics. Despite this relationship, we found

existing theory on impulse di�erential equations to be

either too general or broad to be of immediate and di-

rect use. Finally, this connection to impulsive control

helps to draw comparison to a body of control work

[16] where impulses were introduced in an open-loop

fashion to quash oscillations in vibratory systems.

The paper is organized as follows. In Section 2 we

set-up a model to describe the reset control system

in Figure 1 and identify a key underlying linear con-

trol system which we refer to as the base-linear sys-

tem. Section 3 is central. It introduces this notion

of � positive-realness and links it to BIBO stability.

In Section 4 we again use the � positive-real condi-

tion to show that the base-linear system passes-on its

steady-state performance properties to the reset con-

trol system. In Section 5, we apply these results to

an experimental tape-speed control system described

in [6].

2 Set-Up

In this paper we focus on the reset control system in

Figure 1 where the �rst-order reset element (FORE) is

described by the impulsive di�erential equation [14]:

_xf (t) = �bxf (t) + e(t); e(t) 6= 0

xf (t
+) = 0; e(t) = 0

where xf is its state, e is the system error and b the

FORE's pole; see [3]. To avoid degeneration to a LTI

system, we assume that the FORE continually resets.

We collect these reset times in the unbounded set

I = fti j e(ti) = 0; ti > ti�1+�; � > 0; i = 1; 2; :::;1g

where we assume that adjacent reset times are no

closer than �. This assumption is technically moti-

vated by a desire to have closed-loop solutions con-

tinuable over [0;1), but is also met when FORE is

digitally implemented and the sampling period is a

lower bound to �.

A state-space description of the reset control system

is:

_xp(t) = Axp(t) +Bxf (t)

_xf (t) = �Cxp(t)� bxf (t) + w(t); t =2 I

xf (t
+) = 0; t 2 I

y(t) = Cxp(t) + d(t) (1)

where fA;B;Cg denotes a minimal realization of L(s),

xp(t) 2 <
n and w(t)

4

= r(t)�n(t)�d(t) is the aggregate

input signal. Given (xp(0); xf (0)), the solution to (1)

is piecewise left-continuous on the intervals (ti; ti+1]:

In the absence of resetting, (1) reduces to the following

linear system:

� :
xpl (t)
:
xfl (t)

�
4

= Acl

�
xpl(t)

xfl(t)

�
+

�
0

w(t)

�
; (2)

where xpl(0) = xp(0), xfl(0) = xf (0) and where

Acl
4

=

�
A �B

�C �b

�
:

We refer to this as the base-linear system and, in the

sequel, we will show that it can pass on some of its

properties, such as stability and asymptotic perfor-

mance, to its associated reset control system.

3 BIBO Stability Analysis

In this section we analyze the BIBO stability of (1)

which requires every bounded input6 w to produce a

bounded output y. To begin this analysis we apply the

transformation

zp(t)
:
= xp(t)� xpl(t)

zf (t)
:
= xf (t)� xfl(t) (3)

to (1) to obtain:

:
zp (t) = Azp(t) +Bzf (t)
:
zf (t) = �Czp(t)� bzf (t); t =2 I

zf (t
+
i ) = �xfl(ti); t 2 I: (4)

As an intermediate step, we show that boundedness of

zp implies that y is bounded.

Lemma 1: Assume Acl is asymptotically stable and r,

d and n are bounded. If zp is bounded, then the output

y is bounded.

Proof: We have

jy(t)j = jCxp(t) + d(t)j

� jCzp(t)j+ jCxpl(t)j+ jd(t)j :

Since Acl is stable and w is bounded, then xpl is

bounded. Output y is thus bounded. �

Before we present our main result on BIBO stability,

we need the following lemmas.

6A signal z is said to bounded if there exists a constant M

such that jz(t)j < M for all t.



Lemma 2: If Acl is asymptotically stable and w is

bounded, there exists constants M1 and M2 such that

jzf (t
+
i )j < M1 and jCzp(ti)j < M2 for i = 1; 2; : : : ;1.

Proof: Because Acl is asymptotically stable and w,

then xfl and xpl are bounded. From (4), zf (t
+
i ) =

�xfl(ti): Therefore, there exists an M1 such that

jzf (t
+
i )j < M1 for i = 1; 2; : : : ;1. By de�nition,

Czp(ti) = w(ti) � Cxpl(ti): Since w and xpl are

bounded, then there exists anM2 such that jCzp(ti)j <

M2 for i = 1; 2; : : : ;1. �

The next is the well-known Meyer-Kalman-

Yakubovich Lemma [17].

Lemma 3: Let Z(s) = h(sI�F )�1g be a scalar trans-

fer function where H is asymptotically stable. If Z(s)

is strictly positive-real
7
, then there exist a symmetric

positive-de�nite matrix P , a vector q, and a positive

constant " such that

F
T
P + PF = �q

T
q � "P ;

Pg = h
T
:

Our next de�nition introduces a positive-real condition

that is key in establishing the results of this paper.

De�nition 1: The reset control system (1) is said to

satisfy the � positive-real condition if there exists a

� 2 < such that

h(s)
4

= [�C 1](sI �Acl)
�1[0 � � � 0 1]T (5)

is strictly positive-real.

We now state a main result:

Theorem 1: The reset control system (1) is BIBO

stable if the � positive-real condition (5) is satis�ed.

Proof: Since h(s) in (5) is strictly positive-real, then,

from Lemma 3, there exists a positive-de�nite matrix

P , a vector q and a positive constant " such that

PAcl +A
T
clP = �q

T
q � "P ;

P [0 � � � 0 1]T = [�C 1]T : (6)

Hence, P can be written as

P =

�
P1 �C

T

�C 1

�

where P1 2 <
n�n is positive-de�nite. Along the piece-

wise left-continuous solutions of (4) we de�ne

V (t) = [zTp (t); zf (t)]P [z
T
p (t); zf (t)]

T

= z
T
p (t)P1zp(t) + 2�Czp(t)zf (t) + z

2
f (t)

7A transfer function X(s) is said to be strictly positive real if:

(i) X(s) is asymptotically stable, and (ii) Re[X(j!)] > 0; 8! �
0.

over t 2 (ti; ti+1]. At the reset instants t = ti we then

have

V (t+i ) = z
T
p (ti)P1zp(ti) + 2�Czp(ti)zf (t

+
i ) + z

2
f (t

+
i )

= V (ti) + 2�Czp(ti)zf (t
+
i ) + z

2
f (t

+
i )

�2�Czp(ti)zf (ti)� z
2
f (ti):

Since �2�Czp(ti)zf (ti)� z
2
f (ti) � (�Czp(ti))

2
;

V (t+i ) � V (ti) + 2�Czp(ti)zf (t
+
i ) + z

2
f (t

+
i )

+(�Czp(ti))
2

= V (ti) + [zf (t
+
i ) + �Czp(ti)]

2
: (7)

Because w is bounded, it follows from Lemma 2 that

there exists a constant M > 0 such that [zf (t
+
i ) +

�Czp(ti)]
2
�M for i = 1; 2; : : : ;1. Thus, from (7):

V (t+i ) � V (ti) +M; i = 1; 2; : : : ;1:

Di�erentiating V (t) along solutions to (4), we use (6)

to obtain

:

V (t) = [zTp (t); zf (t)](PAcl +A
T
clP )[z

T
p (t); zf (t)]

T

= [zTp (t); zf (t)](�q
T
q � "P )[zTp (t); zf (t)]

T

� �"[zTp (t); zf (t)]P [z
T
p (t); zf (t)]

T

= �"V (t)

for all t 2 (ti; ti+1]. The non-negativity of V (t) implies

V (t) � e
�"(t�ti)V (t+i ) (8)

whenever t 2 (ti; ti+1]. Since ti+1 � ti > �,

V (ti+1) � e
�"(ti+1�ti)V (t+i )

� e
�"�

V (t+i )

� e
�"�[V (ti) +M ]:

Combining this with (8) gives

V (t) � e
�"(t�ti)[e�"(i�1)�

V (0) +M + e
�"�

M

+ : : :+ e
�"(i�1)�

M ] (9)

for all t 2 (ti; ti+1]. Since V (0) = 0, V (t) � M=(1 �

e
�"�). Therefore, V is bounded. Because P is positive-

de�nite, it follows that zp is bounded. Finally, from

Lemma 1, y is bounded. This completes the proof. �

Remarks: (i) While the � positive-real condition is

only suÆcient for BIBO stability, it appears that it

may be widely applicable to non-trivial situations. For

example, in Section 5 we show that this condition is

satis�ed for a reset control system having 12th-order

L(s). Similarly, in [18], the experimental set-up in [6]

is shown to satisfy the � positive-real condition (5).

(ii) There exists an important class of reset control

systems that satisfy the � positive-real condition and,



hence, are BIBO stable. To describe them, consider

the reset control systems in Figure 1 with L(s) =
(s+b)!2

n

s(s+2�!n)
where b is the pole of FORE and �; !n > 0.

This class was introduced in [3] and its base-linear

system has standard second-order transfer function
!2
n

s2+2�!ns+!2
n

: This class of reset control systems satis-

�es the � positive-real condition (5) for all combination

of positive parameters b, � and !n; see [9]. Therefore,

from Theorem 1, these reset control systems are BIBO

stable.

(iii) It is possible that a reset control system is un-

stable even though its base-linear system is stable and

describing-function analysis does not predict a limit-

cycle. Such an example is given in [8].

3.1 Robustness to Implementation Errors

In (1) we implicitly assumed that the reset process is

ideal; that is, the state of FORE resets exactly to zero

at the precise instant when its input e(t) is zero. Of

course, this seldom happens as exempli�ed by the digi-

tal implementation of reset elements where such errors

occur due to �nite sampling rates and signal quantiza-

tion. To account for such inaccuracies, we modify the

model of reset control accordingly to:

_xp(t) = Axp(t) +Bxf (t)

_xf (t) = �Cxp(t)� bxf (t) + w(t); t =2 I

xf (t
+) = �1(t); t 2 I

I = ft : Cxp(t) = w(t) + �2(t); ti+1 � ti > �;

� > 0; i = 1; 2; :::g; (10)

where �1 and �2 are bounded signals modeling imple-

mentation errors. The boundedness of �2 is necessary

for y to be bounded. The following corollary states

that the BIBO stability condition in Theorem 1 re-

mains valid even in the face of these implementation

errors.

Corollary 1: The reset control system (10) is BIBO

stable if it satis�es the � positive-real condition (5).

Proof: The proof follows along the same lines as that

in Theorem 1. After using the state transformation

(3), system (10) becomes:

:
zp (t) = Azp(t) +Bzf (t)
:
zf (t) = �Czp(t)� bzf (t); t =2 I

zf (t
+
i ) = �xfl(ti) + �1(t); t 2 I:

Since �1 is bounded, it is straightforward to show that

Lemma 1 and Lemma 2 are still in e�ect. Taking the

same V and following through the proof of Theorem

1 yields bounded V , zp, and, �nally, bounded y. This

completes the proof. �

4 Asymptotic Analysis

In this section we show that satisfaction of the �

positive-real condition (5) yields more than BIBO sta-

bility. With it, we can further show that the reset

control system (1) is asymptotically stable and that it

inherits the asymptotic tracking properties of its base-

linear system. In the sequel we denote the tracking

error in the reset control system and its base-linear sys-

tem by e(t) = w(t)�Cxp(t) and el(t) = w(t)�Cxpl(t);

respectively. We �rst need the following technical lem-

mas.

Lemma 4: If limt!1 el(t) = 0, then

lim
t!1

Czp(ti) = 0 and lim
i!1

zf (t
+
i ) = 0:

Proof: From the de�nition of ti;

Czp(ti) = w(ti)� Cxpl(ti)! 0;

as i!1: From (2) we have

:
xfl (t) = �bxfl(t)� Cxpl(t) + w(t):

Since limt!1 el(t) = 0 and b > 0; then

limt!1 xfl(t) = 0: From (4), zf (t
+
i ) = �xfl(ti) so

that limi!1 zf (t
+
i ) = 0. �

Lemma 5: If the � positive-real condition (5) is sat-

is�ed and limt!1 el(t) = 0; then

lim
t!1

��
xp(t)

xf (t)

�
�

�
xpl(t)

xfl(t)

��
= 0:

Proof: Take V (t) as in the proof of Theorem 1. Then,

from (7),

V (t+i ) � V (ti) + [zf (t
+
i ) + �Czp(ti)]

2
:

With Mi = [zf (t
+
i )+�Czp(ti)]

2 and limt!1 el(t) = 0;

it follows from Lemma 4 that limi!1Mi = 0: Thus,

(9) becomes

V (t) � e
�"(t�ti)[e�"(i�1)�

V (0) +Mi + e
�"�

Mi�1

+ : : :+ e
�"(i�1)�

M1] (11)

for all t 2 (ti; ti+1]: Since V (0) = 0, then from (4)

limt!1 V (t) = 0 so that

lim
t!1

��
xp(t)

xf (t)

�
�

�
xpl(t)

xfl(t)

��
= 0:

This completes the proof. �

We now state our asymptotic stability result.

Theorem 2: The reset control system (1) is asymptot-

ically stable if it satis�es the � positive-real condition

(5).



Proof: Set w(t) � 0. From (11), it is straightforward

to compute

V (t) � sup
i

Mi

1� e�"�

where Mi = [zf (t
+
i ) + �Czp(ti)]

2
: From (4), zf (t

+
i ) =

�xfl(ti) and from (3), Czp(ti) = �Cxpl(ti) so that

Mi = [�xfl(ti)� �Cxpl(ti)]
2
: Therefore,

V (t) � sup
ti

[�xfl(ti)� �Cxpl(ti)]
2
=(1� e

�"�): (12)

The right-hand side of (12) can be bounded as in

[xfl(t) + �Cxpl(t)]
2
� k





 xpl(t)

xfl(t)






2

for some k > 0 and for all t > 0. Since V (t)

is a positive-de�nite function, then the left-hand

side of (12) can be bounded below by the norm of

[zTp (t); zf (t)]
T . Hence, there exists a constant k1 such

that 



 zp(t)

zf (t)





 � k1 sup
t2[0;1)





 xpl(t)

xfl(t)






for all t > 0. Therefore, from (3),





 xp(t)

xf (t)





 � (k1 + 1) sup
t2[0;1)





 xpl(t)

xfl(t)





 : (13)

Since the base-linear system (2) is asymptotically sta-

ble and xpl(0) = xp(0); xfl(0) = xf (0), then (13) im-

plies that (1) is Lyapunov stable. To complete the

proof we need to show that the state asymptotically

converges. Since Acl is stable then, from (2),

lim
t!1

�
xpl(t)

xfl(t)

�
= 0:

Therefore, from Lemma 5,

lim
t!1

�
xp(t)

xf (t)

�
= 0

showing that the states asymptotically converge. This

proves the theorem. �

We now show that the base-linear system can pass on

its asymptotic tracking properties to its reset control

system.

Theorem 3: Suppose the � positive-real condition (5)

is satis�ed. If limt!1 el(t) = 0, then limt!1 e(t) = 0.

Proof: From Lemma 5, limt!1[Cxp(t) � Cxpl(t)] =

0: Consequently, limt!1 e(t) = 0: This completes the

proof. �

Theorem 3 indicates that the classical \type k" be-

havior of a base-linear system is inherited by its re-

set control system. Speci�cally, if r(t) and d(t) are

polynomials signals of degree no greater than k, if

limt!1n(t) = 0 and if L(s) contains at least k inte-

grators, then the reset system (1) has zero steady-state

tracking error provided it satis�es the � positive-real

condition (5).

5 Example

In this section we apply the above results to analyze

a previously published study on an experimental reset

control for a tape-speed servo system [6]. While that

reset design achieved improved performance compared

with LTI designs, it was not supported with an analy-

sis of stability or steady-state performance. The struc-

ture of this system is the one shown in Figure 1 where

L(s) is a strictly-proper 14th-order transfer function

and the FORE's pole is b = 30. To establish stabil-

ity and steady-state performance we �rst check the �

positive-real condition (5). Since The base-linear sys-

tem Acl is stable, then h(s) in (5) is asymptotically

stable. A simple search and computation shows that

Re[h(j!)] > 0 for all ! � 0 when � = 0:001; see Fig-

ure 2. Invoking Theorems 1-3, we conclude that this

reset control system is BIBO and asymptotically sta-

ble.
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Figure 2: The plot of Re[h(j!)].

To analyze steady-state performance, consider the re-

sponse when r(t) = 0 and n(t) = sin(t)e�t shown

in Figure 3. As expected from Lemma 4 and 5, we

observed a zero steady-state error. Another confor-

mation is shown in Figure 4 where r(t) = 1 and

n(t) = �0:1e�2t.

6 Conclusions

This paper developed a suÆcient condition (the �

positive-real condition) for BIBO stability for a class

of reset control systems. This condition also led to

a series of results including asymptotic stability and

steady-state performance. The � positive-real con-

dition was shown to be satis�ed in an experimen-

tal demonstration of reset control, con�rming the ob-
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Figure 3: Output y(t) to r(t) = 0 and n(t) = sin(t)e�t.
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Figure 4: Output y(t) to r(t) = 1 and n(t) = �0:1e�2t.

served performance as well as demonstrating its appli-

cability.
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