
1

SAE Paper No: 2002-01-0445

Cycle-Accurate LIN Network Modeling and Simulation

Qian Chen, Yibing Dong and Salim Momin
Virtual Garage, Motorola Inc.

ABSTRACT

LIN (Local Interconnected Network) is a serial
communications protocol that supports the control of
mechatronic nodes in distributed automotive
applications. This paper discusses LIN network modeling
and simulation based on a token-based and event driven
simulation platform. The complete LIN network features
are modeled in the behavior level. The simulation is time-
accurate and it provides system information, such as
CPU load, bus utilization and message latency time. It
can also simulate the scenarios such as network sleep
and wakeup, switch event and error message. This LIN
network simulation model can be integrated with CAN
network simulation model for a complete vehicle network
simulation.

INTRODUCTION

LIN is a low cost network which complements the
existing portfolio of automotive multiplex networks. It is
starting to become popular in the automotive industry.
One major problem in the LIN network development is
that before the hardware network is built, there is no way
for the network designer to collect enough accurate
system information of the network, such as CPU
utilization, bus utilization and system response time. The
system response time is especially a problem in the case
that we need to consider some system issues, such as
network wakeup, error message handling and gateway
operation. Building the hardware network is costly and
time consuming and any change in the design may
require a complete rebuilding of the hardware network.
Moreover, it is often too late to find the design flaws after
the hardware network has been built and completely
tested. The situation can be worse for the LIN network
design in the sense that normally LIN network need to be
connected to the CAN networks. It means that the
thorough tests of the LIN network design may not be
performed until both the LIN network and CAN network
are built. Obviously, a simulation environment that can
provide accurate information of the system performance
for the LIN network design before any hardware is

available will be a great help in the LIN network
development.

LIN is a sub-network with speed up to 20k bit/s, wire
length less or equal 40 m and recommended maximum
16 nodes. The cost for LIN is low since it uses single
wire, its silicon implementation is based on common
UART/SCI interface and it does not require quartz or
ceramic resonator in the slave nodes. LIN uses a single-
master / multiple-slave concept which guarantees the
latency times for signal transmission (assume that there
is no error). The LIN network structure can be described
briefly with the following Figure 1.1:

Master node Slave nodeSlave node

Slave Task Slave TaskSlave Task

Master Task

SCI SCISCI

LIN Transceiver LIN TransceiverLIN Transceiver

LIN BUS

Figure 1.1 LIN network structure

LIN message has a fixed frame format with configurable
data length (2, 4 or 8 bytes). A message frame includes
two parts: header and response. The header consists of
three fields: synchronization break, synchronization field
and identifier fields and the response consists of several
(2, 4 or 8 bytes) data fields and one checksum field. The
header carries synchronization and identifier information
from the master task to the slave tasks. Only the master
task can send out a header. The response carries the
data information. It is sent by the slave tasks from either
a master node or a slave node. If the slave task fails to
respond to a message header, the master task will
transmit a new message header after a maximum time-
out. The format of LIN message frame can be described
with the following Figure 1.2:

2

Figure 1.2 The LIN Message Frame

LIN NETWORK MODEL

The LIN network modeling is based on a simulation
platform that is token based and event driven. The
hierarchy of the LIN network modeling is as follows: The
network model consists of the models of master node,
slave nodes and LIN bus. The model of each node
consists of the partition of hardware architecture and
software architecture, which model the hardware and
software behavior of the node respectively. The
hardware architecture includes the modeling of the
hardware blocks that are related to LIN message
transmission, such as CPU, SCI and timer. The software
architecture includes the modeling of the software tasks
and the relationship among various software and
hardware tasks. Furthermore the flowchart and cycles
information of each software task are profiled and
mapped into the software task model so that our LIN
network simulation is cycle accurate. The LIN bus is
modeled as a monitor of the message traffic in the bus.
The hardware and software architectures of the master
node and the slave nodes are different and they will be
discussed separately in the following sections. Following
is an example of the LIN network simulation model.

Figure 2.1 LIN network simulation model

HARDWARE ARCHITECTURE MODELING

The hardware architecture is one basic component in our
hierarchical model structure. The LIN hardware
architecture modeling include the modeling of the master
node and the modeling of the slave node.

MASTER NODE HARDWARE MODELING

In the master node model, we have the hardware models
of CPU, SCI and timer. These are the basic hardware
blocks required for the operation of a LIN master node.
The SCI is the physical layer for the LIN master node
and a timer is required for the scheduling of message
transmission and the detection of slave-no-response
time-out. More hardware blocks can be added to the
model if required. The hardware architecture for the
master node model is described with the following Figure
3.1.

Figure 3.1. Master node hardware modeling

SLAVE NODE HARDWARE MODELING

The hardware architecture for the slave node model is
described with the Figure 3.2. Here, compared to the
master node model, we have a model block for the
switch/activator in addition to the CPU and SCI models
but we do not have a timer model block. That is because
the switch and activator are normal for the functionality of
a slave node, while a timer is not so critical for a slave
node except for the detecting of bus idle time out. (This
functionality is not simulated in our model since the
normal simulation time is not long enough to observe this
time-out.) The switch/activator block will generate the
event stimulus for the simulation and the response to the
switch stimulus, which enable us to check the latency
time for the switch response.

.

Figure 3.2 Slave node hardware modeling

IDSync CheckData nData 1 ...
Header

Response Space

Break

Response

LIN Message Frame

Tilt2Tilt1switch

seat2seat1doorlcwindow

Mirror

pcm LIN_bus

master node

slave nodes LIN bus

bus monitor

CAN
bus

switch_uP Switch

SCI

data_io

sci_io

switch_io

bus_io

bus_port

Slave node
CPU model

SCI model

Switch/Activator model

fcm_uP Timer

SCI

data_io

sci_io

time_io

bus_io

bus_port

Master node
CPU model

SCI model

Hardware timer model

3

SOFTWARE ARCHITECTURE MODELING

Besides the hardware architecture, the model also needs
the software architecture. The software architecture
defines the relationship among various software and
hardware tasks that simulate the functions of the LIN
protocol. As mentioned before, our LIN network modeling
is based on a simulation platform that is token based and
event driven. Therefore, each software task block and
hardware block will communicate with the transmission
of tokens. The software architecture defines the type of
the message to be transmitted and the route of the
transmission. By doing so, the software architecture
describes the relationships among different software
tasks and hardware blocks. The software architecture
modeling also includes the master node modeling and
slave node modeling.

MASTER NODE SOFTWARE MODELING

The software architecture for the master node is
described with the following Figure 4.1. As stated before,
the master node includes a master task and a slave task.
The modeling describes the type of messages to be
transmitted (not shown in the Figure 4.1) and the route of
transmission among the slave task, master task, timer
hardware block and SCI block. Hence, the relationship
among these two tasks, the timer model and the SCI
model is clearly defined in the software architecture.

Figure 4.1 Master node software modeling

SLAVE NODE SOFTWARE MODELING

The software architecture for the slave node is described
with the following Figure 4.2. The basic concept is the
same as that of the master node. The software
architecture defines the relationships among the slave
task, switch/activator block and SCI block. The
difference is that it consists of different component
blocks. For example, the slave node only has slave task.
In our model, it does not consist of the timer block while
it includes a block for the switch/activator (refer to the
slave node hardware architecture model). Which block is
included in the architecture is determined by the specific
application need.

Figure 4.2 Slave node software modeling

SIMULATION AND RESULTS

In order to become a time-accurate simulation model,
this LIN network model needs to include not only the
hardware architecture and software architecture but also
to simulate the software processing with accurate timing
information. Therefore, in the simulation model we
incorporate the timing information from the Motorola LIN
drivers running in Cosmic M68HC12 simulator to make it
cycle-accurate. In order to do so, first we need to profile
the flow chart of the Motorola LIN drivers and run the LIN
drivers in the simulator to profile the desired timing
information. This timing information is incorporated in the
programming of the software modeling of the LIN
network to provide cycle-accurate timing penalty for the
CPU. So the simulation result can show the CPU running
time for each task and total CPU utilization. Furthermore,
each software task can be assigned a priority such that
high priority task can interrupt low priority task just as the
how the real software works. Therefore, this simulation
not only provides the CPU timing information as accurate
as we can, but also provides the software processing
delay for the message transmission.

The following Figure 5.1 shows an example activity chart
for the LIN network simulation result. Each small mark
represents an activity for the corresponding hardware or
software block. Either it is processing a task or
transmitting a message. This activity chart clearly shows
the operation of the LIN network. For example, from this
chart we can see that our simulation model simulates the
following LIN network scenarios:

• How the LIN network wakes up from the sleep mode
when a switch is pressed.

• How the LIN master node sends the message
header and the slave node sends the response.

• How the slave-no-response time out works when the
slave node fails to respond to message header.

• How the switch command is transmitted to the
activator and how long is the latency time.

LIN_slave LIN_master Timer

SCI

Slave task Master task Timer model

SCI model

: Direction of message transmission

LIN_slave Switch/
Activa tor

SC I

S lave task Switch/Activator m odel

SC I m odel

: D irection of m essage transm ission

4

Also the simulation result can show us the information of
CPU bandwidth and bus utilization which will be very
useful when we analyze the penalty of LIN network
operation in a LIN-CAN gateway.

Besides this activity chart, the simulation also provides
the detailed information about each node and each
message. For example, when does an error occur and
what kind of error it is. Also, with a convenient GUI, the
user can get the information such as: what is the
maximum latency time for each message, how many
messages are transmitted and received by each node
and what is the dynamic moving average CPU load of
each node. Finally, by clicking a button, the user can get
an automatically generated report of the statistical data
of each node and each message. Figure 5.2 gives a brief
screenshot of these results and analysis.

As mentioned before, LIN network is usually used as a
sub-network of CAN network. Several LIN networks and
CAN networks will work together and messages and
signals are exchanged among these networks. One
important advantage of our LIN network simulation
model is that it can be connected with our CAN network
simulation model to perform the complete simulation of
several networks as desired.

CONCLUSION

This paper presents the modeling and cycle-accurate
simulation of LIN network based on a token based and
event driven simulation platform. The simulation can
provide accurate system information of the network to
the network designer far before any hardware is built. It
can also provide the module builder information of the
network impact on the performance of each module.
Furthermore this LIN network simulation model can be
connected with our CAN network simulation model to
perform a complete multi-network simulation.

REFERENCES

[1] LIN consortium, “LIN Protocol Specification, Revision

1.2”, November 17, 2000.

[2] LIN consortium, “LIN API Recommended Practice,

Revision 1.2”, November 17, 2000.

[3] Wense, H., "Introduction to Local Interconnect

Network", SAE World Congress, Detroit, March 2000.

Document No. 2000-01-0145, SAE press.

[4] Motorola Inc., "LIN12 Driver User's Manual, Rev. 1.2",

January 12, 2001.

CONTACT

Dr. Qian Chen
Virtual Garage, Motorola Inc.
41700 Six Mile Road
Northville, MI 48167
Email: Qian.Chen@motorola.com

5

Figure 5.1 The activity chart of the LIN network simulation result

Figure 5.2 The network simulation results and analysis

